Космический лифт и нанотехнологии. Космический лифт: фантазии или реальность? Экономия от использования космического лифта


Какой же мальчишка не мечтает стать космонавтом? Однако осуществить эту мечту удается лишь единицам людей во всем мире, а отправиться в частный космический полет могут только очень богатые люди. Но в 2050 году на орбиту сможет попасть практически любой желающий. Ведь Япония обещает к этому времени запустить первый в мире лифт в Космос .




Среди множества по освоению космического пространства можно отдельно выделить инициативу японской строительной корпорации Obayashi по созданию орбитального лифта. Это транспортное средство, по замыслу авторов, должно появиться уже к 2050 году. Оно обещает стать самым дешевым способом доставлять в Космос людей и грузы.



Лифт будет передвигаться со скоростью 200 километров в час по сверхкрепкому и сверхлегкому тросу, ведущему от земной поверхности на отдаленную орбитальную стацию, где будет расположена не только научная лаборатория, но также отель для космических туристов, коих с появлением этого вида транспорта станет в сотни или даже тысячи раз больше, чем существует в наше время.



Делать столь смелые обещания корпорации Obayashi позволяет разработка новых материалов, позволяющих создавать волокна, которые являются в сто раз более крепкими, чем сталь. И технологии эти развиваются с каждым новым годом, с каждым новым месяцем.

Существуют также ежегодные международные технические конкурсы, участники которых работают над идеями по реализации космического лифта. Они разрабатывают новые материалы и инновационные технологии по доставке грузов на орбиту. При этом с каждым годом идеи становятся все более четкими и перспективными.



Сочетание описанных выше факторов как раз и позволяет корпорации Obayashi делать ошеломляющие заявления о возможности запуска орбитального лифта к 2050 году.

Просматривал сейчас научные задачи, за которые предлагают большое вознаграждение и наткнулся на такую, странную - протянуть трос в космос.

Впервые гипотетическая идея постройки такой конструкции, которая будет основана на применении троса, протянутого от поверхности планеты к орбитальной станции, была высказана ещё в 1895 году Константином Циолковским. С тех пор, не смотря на все достижения науки и техники, проект остаётся только на стадии идеи.

Сколько же призовой фонд этого проекта?

С 2005 года в США проходят ежегодные соревнования Space Elevator Games, организованные фондом Spaceward при поддержке NASA. В этих состязаниях существуют две номинации: «лучший трос» и «лучший робот (подъёмник)».

То есть для того, чтобы получить премию, вам совсем не нужно строить полностью рабочий космический лифт. Достаточно разработать идею подходящего троса или подходящего подъёмника и соорудить их прототипы. В 2009 году общий призовой фонд Space Elevator Games составлял $4 000 000.

А в чем такой интерес именно к этому методу подъема в космос? Можно подумать о дешевизне? Но обслуживать настолько сложную инфраструктуру, поднимать трос, ликвидировать обрыв - может статься дороже чем запустить ракету. А какую массу можно будет поднять по такому тросу? Не думаю что много, да и затраты энергии тоже надо учесть.

Вот какие идеи сейчас бродят в умах исследователей и конструкторов по поводу ЛИФТА В КОСМОС.

Лифты, которые могут перевозить людей и груз с поверхности планеты в космос, могут означать конец загрязняющим пространство ракетам. Но сделать такой лифт крайне сложно. Концепция космических лифтов была известна давным-давно и введена еще Константином Эдуардовичем Циолковским, но с тех пор мы даже ни на йоту не приблизились к практическому воплощению такого механизма. Элон Маск в твиттере недавно написал: «И, пожалуйста, не задавайте мне вопросы по поводу космических лифтов, пока мы не вырастим материал из углеродных нанотрубок длиной хотя бы в метр».

Элон Маск, по мнению многих, визионер нашего времени — пионер частного освоения космоса и человек, стоящий за идеей транспортной системы Hyperloop, способной перевозить людей из Лос-Анджелеса в Сан-Франциско по металлической трубе всего за 35 минут. Но есть некоторые идеи, которые даже он считает слишком надуманными. В том числе и космический лифт.

«Это невероятно сложно. Я не думаю, что построить космический лифт — реалистичная идея», — заявил Маск в ходе конференции в MIT в прошлом октябре, добавив, что проще было бы построить мост из Лос-Анджелеса в Токио, чем лифт, который сможет вывозить материалы в космос.

Отправка людей и полезных грузов в космос в капсулах, которые тянутся вдоль гигантского кабеля, удерживаемого на месте вращением Земли, была показана в работах научных фантастов вроде Артура Кларка, но едва ли представлялась целесообразной в реальном мире. Получается, мы обманываем сами себя, и наших способностей недостаточно, чтобы решить эту сложнейшую техническую задачу?

Сторонники космических лифтов считают, что достаточно. Они считают химические ракеты устаревшими, рискованными, наносящими вред окружающей среде и пожирающими финансы. Их альтернатива — это, по существу, железнодорожная линия в космос: работающий на электричестве космический аппарат, движущийся от якоря на Земле по сверхпрочному тросу, связанному с противовесом на геостационарной орбите вокруг планеты. После ввода в эксплуатацию космические лифты могли бы доставлять полезный груз в космос всего за 500 долларов за килограмм, что несравнимо с 20 000 долларов за килограмм по нынешним расценкам.

«Эта феноменально эффективная технология могла бы открыть Солнечную систему для человечества, — говорит Питер Свон, президент Международного консорциума космического лифта. — Я думаю, первые лифты будут роботизированными, а уже через 10-15 лет мы сделаем от шести до восьми лифтов, которые будут достаточно безопасными и для того, чтобы возить людей».

К сожалению, такая структура должна быть не только в 100 000 километров длиной — больше чем окружность Земли в два раза, — ей также нужно поддерживать свой собственный вес. Пока на Земле нет никакого материала с такими свойствами.

Но некоторые ученые считают, что его можно сделать — и оно станет реальностью уже в течение этого века. Крупная японская строительная компания пообещала создать его к 2050 году. Американские исследователи, недавно разработавшие алмазоподобный материал из нановолокон, тоже полагают, что трос для космического лифта появится уже до конца века.

Конструкция такого невероятного сооружения будет основана на специальном тросе, сделанном из тонких и сверхпрочных углеродных нанотрубок. Этот трос будет иметь длину 96 тысяч километров.

По законам физики, центробежная сила вращения не даст упасть такому тросу, растягивая его по всей длине. В случае успеха, подъемник сможет перемещаться со скоростью 200 км/час, поднимая до 30 человек в кабине. На высоте 36 тысяч километров, которой лифт будет достигать за неделю, планируется остановка. На такую высоту лифт будет поднимать туристов, а исследователи и специалисты смогут подняться до самого верха.

Современные идеи космического лифта уходят корнями в 1895 год, когда Константин Циолковский вдохновился недавно построенной Эйфелевой башней в Париже и рассчитал физику постройки здания, уходящего в космос, чтобы космические аппараты можно было запускать с орбиты без ракет. В романе Артура Кларка 1979 года «Фонтаны рая» главный герой строит космический лифт с аналогичной конструкцией, представляемой сегодня.

Но как воплотить ее в реальность? «Мне нравится эпатажность этой идеи, — говорит Кевин Фонг, основатель Центра высотной, космической и экстремальной медицины при Университетском колледже Лондона. — Я понимаю, почему людям нравится эта идея, ведь если бы вы могли добраться до низкой околоземной орбиты дешево и безопасно, очень скоро внутренняя Солнечная система стала бы в вашем распоряжении».

Вопросы безопасности

Камень преткновения лежит в том, как построить такую систему. «Для начала она должна быть создана из пока не существующего, но прочного и гибкого материала с нужной массой и характеристиками плотности, чтобы поддерживать транспорт и выдержать невероятное воздействие внешних сил, — говорит Фонг. — Думаю, все это потребует серии самых амбициозных орбитальных миссий и космических прогулок на низкой и высокой околоземной орбитах в истории нашего вида».

Есть также проблемы безопасности, добавляет он. «Даже если бы мы могли решить существенные технические трудности, связанные со строительством такой штуки, вырисовывается страшная картина гигантского сыра с дырками, пробитыми всем этим космическим мусором и обломками наверху».

За последние 12 лет было представлено три детализированных рабочих проекта. Первый, опубликованный Брэдом Эдвардсом и Эриком Вестлингом в книге 2003 года «Космические лифты», предвидел перевозку 20 тонн полезного груза с питанием на основе земных лазеров по цене 150 долларов за килограмм и с ценой общего строительства в 6 миллиардов долларов.

Взяв эту концепцию за основу, дизайн Международной ассоциации астронавтов 2013 года уже обеспечил кабину защитой от погодных условий на первые 40 километров, а затем оснастил ее солнечными батареями. Транспортировка по этому плану стоит 500 долларов за килограмм, а строительство всей конструкции — 13 миллиардов долларов за первый проект (дальше всегда дешевле).

Эти предложения включают противовес в виде захваченного астероида на орбите Земли. Доклад МАА обозначает, что однажды этот пункт может стать возможным, но не в ближайшем будущем.

Плавающий якорь

Вместо этого, часть весом в 1900 тонн, которая должна поддерживать трос весом в 6300 тонн, может быть собрана из космических аппаратов и транспорта, которые доставляли трос в космос. Также она будет дополняться захваченными спутниками, которые перестали функционировать и остались болтаться на орбите в качестве космического мусора.

Они также предложили представить якорь на Земле плавучей платформой размером с большой танкер или авианосец рядом с экватором, поскольку это увеличило бы его пропускную способность. Предпочтительным местом является точка в 1000 километрах к западу от Галапагосских островов: ураганы, тайфуны и торнадо там считаются редкостью.

Корпорация «Обаяши», одна из пяти крупных строительных компаний Японии, в прошлом году представила планы на обустройство еще более надежного космического лифта, перевозящего роботизированные кары, оснащенные маглевными двигателями вроде тех, что используются на высокоскоростных железнодорожных путях. Они могли бы перевозить людей с необходимой прочностью троса. Такой дизайн обойдется в 100 миллиардов долларов по предварительным расчетам, но транспортировка будет стоить 50-100 долларов за килограмм.

Хотя препятствий, безусловно, много, единственный компонент, без которого строительство космического лифта будет невозможным сегодня, является сам трос, говорит Свон.

«Найти материал, из которого можно сделать трос, это основная технологическая проблема, — говорит он. — Все остальное ерунда. Мы уже можем все это сделать».

Алмазные тросы

Ведущим претендентом является трос, сделанный из углеродных нанотрубок, которые были созданы в лаборатории с пределом прочности на растяжение в 63 гигапаскаль — в 13 раз прочнее самой лучшей стали.

Максимальная длина углеродных нанотрубок неуклонно растет с момента их открытия в 1991 году. В 2013 году китайские ученые достигли уже полуметровой длины. Авторы доклада МАА предвещают длину троса из углеродных нанотрубок в километр к 2022 году, а к 2030 — необходимую для производства космического лифта.

Между тем в сентябре был представлен новый претендент на космический трос. Команда под руководством Джона Баддинга, профессора химии из Университета штата Пенсильвания, опубликовала работу в Nature, в которой рассказала, что создала сверхтонкие алмазные нановолокна, которые могут быть прочнее и жестче углеродных нанотрубок.

Команда начала со сжатия бензола атмосферным давлением в 200 000 атмосфер. Когда после этого давление медленно отпускали, атомы пересобирались в новую, чрезвычайно упорядоченную структуру, подобную тетраэдру.

Эти формы связались вместе, чтобы образовать сверхтонкие нановолокна, чрезвычайно похожие по структуре на алмаз. Хотя пока невозможно замерить их прочность напрямую из-за их размера, теоретические расчеты показали, что волокна могут быть прочнее и жестче, чем самые прочные синтетические материалы современности.

Снижение рисков

«Если бы мы могли научиться делать материалы на основе алмазных нановолокон или углеродных нанотрубок достаточно длинными и качественными, наука подсказывает, что мы могли бы начать строительство космического лифта сразу же», — говорит Баддинг.

Но даже если бы один из таких материалов оказался достаточно прочным, сборка и монтаж отдельных элементов космического лифта остается весьма проблемным мероприятием. Другие головные боли будут включать безопасность, сборку средств, удовлетворение интересов конкурирующих сторон и т. п. Свона, по крайней мере, это не пугает.

«Конечно, будут серьезные проблемы, как и у тех, кто строил первую трансконтинентальную железную дорогу, Панамский и Суэцкий каналы, — говорит он. — Потребуется много времени и денег, но, как и в случае со всеми великими предприятиями, справиться с препятствиями придется лишь однажды».

Даже Маск не может заставить себя дискредитировать эту идею. «Это явно не то, о чем можно говорить сейчас, — сказал он. — Но если бы кто-то переубедил меня, было бы здорово».

А некоторые ученые высказывают такие пять причин, из за которых такой лифт никогда не будет построен:

1. Нет достаточно прочного материала для троса

Нагрузка на трос может превышать 100 000 кг/м., так что материал для его изготовления должен обладать чрезвычайно высокой прочностью для устойчивости к растяжениям, и при этом очень низкой плотностью. Пока такого материала нет — не подходят даже углеродные нанотрубки, считающиеся сейчас самыми прочными и упругими материалами на планете.

К сожалению, технология их получения только начинает разрабатываться. Пока что удаётся получить крошечные кусочки материала: самая длинная нанотрубка, которую удалось создать — пара сантиметров в длину и несколько нанометров в ширину. Удастся ли когда-нибудь сделать из этого достаточно длинный трос, пока неизвестно.

2. Восприимчивость к опасным вибрациям

Трос будет восприимчив к непредсказуемым порывам солнечного ветра — под его воздействием он будет изгибаться, и это отрицательно скажется на стабильности лифта. В качестве стабилизаторов к тросу можно прикрепить микродвигатели, но эта мера создаст дополнительные трудности в плане технического обслуживания сооружения. Кроме того, это затруднит продвижение по тросу специальных кабинок, так называемых «альпинистов». Трос, скорее всего, вступит с ними в резонанс.

3. Сила Кориолиса

Трос и «альпинисты» неподвижны относительно поверхности Земли. А вот по отношению к центру Земли объект будет двигаться со скоростью 1 700 км/ч на поверхности и 10 000 км/ч на орбите. Соответственно, «альпинистам» при запуске надо придать эту скорость. «Альпинист» разгоняется в перпендикулярном тросу направлении, и из-за этого трос будет раскачиваться подобно маятнику. Одновременно с этим возникает сила, пытающаяся оторвать наш трос от Земли. Сила обратно пропорциональна величине прогиба троса и прямо пропорциональна скорости подъема груза и его массе. Таким образом, сила Кориолиса мешает быстро поднимать грузы на геостационарную орбиту.
С силой Кориолиса можно бороться, просто запуская одновременно двух «альпинистов» — с Земли и с орбиты, но тогда сила между двумя грузами будет растягивать трос ещё сильнее. Как вариант — мучительно медленный подъём на гусеничном ходу.

4. Спутники и космический мусор

За последние 50 лет человечество запустило в космос множество объектов — полезных и не очень. Или строителям лифта придётся всё это найти и убрать (что невозможно, учитывая количество полезных спутников или орбитальные телескопы), или предусмотреть систему, защищающую объект от столкновений. Трос — теоретически неподвижен, поэтому любое вращающееся вокруг Земли тело рано или поздно с ним столкнётся. Кроме того, скорость при столкновении будет практически равна скорости вращения этого тела, так что тросу будет причинён большой ущерб. Маневрировать трос не может, а протяжённостью обладает большой, поэтому столкновения будут частыми.
Как с этим бороться, пока не ясно. Учёные говорят о постройке орбитального космического лазера для сжигания мусора, но это уж совсем из области научной фантастики.

5. Социальные и экологические риски

Космический лифт вполне может стать объектом террористической атаки. Успешная подрывная операция нанесёт огромный ущерб и может вообще похоронить весь проект, так что одновременно с лифтом придётся выстраивать вокруг него и круглосуточную оборону.

Экологи же считают, что кабель, как ни парадоксально, может сместить земную ось. Трос будет жёстко закреплён на орбите, и любое его смещение наверху отразится на Земле. Кстати, представляете, что случится, если он вдруг оборвётся?

Таким образом, реализовать такой проект на Земле очень сложно. А теперь хорошая новость: это будет работать на Луне. Сила притяжения на спутнике куда меньше, а атмосфера фактически отсутствует. Якорь можно создать в поле силы тяжести Земли, и трос с Луны будет проходить через точку Лагранжа — таким образом, мы получаем канал связь между планетой и её естественным спутником. Такой трос при благоприятных условиях сможет переправлять на орбиту земли около 1000 тонн груза в сутки. Материал, конечно, потребуется сверхпрочный, но ничего принципиально нового изобретать не придётся. Правда, длина «лунного» лифта должна будет составить около 190 000 км из-за эффекта, названного Гомановской траекторией.


источники

Многим известна библейская история о том, как люди вознамерились стать подобными Богу и решили воздвигнуть башню высотой до небес. Господь, разгневавшись, сделал так, что все люди начали говорить на разных языках, и стройка остановилась.

Правда это или нет, сказать сложно, но спустя тысячи лет человечество снова задумалось над возможностью возведения супербашни. Ведь если удастся соорудить конструкцию высотой в десятки тысяч километров, то можно удешевить доставку грузов в космос почти в тысячу раз! Космос раз и навсегда перестанет быть чем-то далеким и недостижимым.

Дорогой космос

Впервые концепцию космического лифта рассмотрел великий русский ученый Константин Циолковский. Он предполагал, что если построить башню высотой 40 000 километров, то центробежная сила нашей планеты будет держать всю конструкцию, не позволяя ей упасть.

С первого взгляда, от этой идеи за версту пахнет маниловщиной, но давайте рассуждать логически. Сегодня большую часть веса ракет составляет топливо, которое тратится на преодоление земной гравитации. Разумеется, это сказывается и на цене запуска. Стоимость доставки одного килограмма полезного груза на околоземную орбиту составляет около 20 000 долларов.

Так что когда родные передают космонавтам, находящимся на МКС, варенье, можете не сомневаться: это самое дорогое лакомство на свете. Даже английская королева не может себе такого позволить!

Запуск одного шаттла обходился NASA в сумму от 500 до 700 миллионов долларов. Ввиду проблем в американской экономике руководство NASA было вынуждено закрыть программу космических челноков и отдать функцию по доставке грузов на МКС на аутсорсинг частным компаниям.

К проблемам экономическим добавляются еще и политические. Из-за разногласий по украинскому вопросу страны Запада ввели ряд санкций и ограничений против России. К сожалению, они коснулись и сотрудничества в космонавтике. NASA получило от правительства США приказ о заморозке всех совместных проектов, за исключением МКС. В ответ вице-премьер-министр Дмитрий Рогозин заявил, что Россия не заинтересована в участии в проекте МКС после 2020 года и намерена переключиться на осуществление других целей и задач, таких как основание на Луне постоянной научной базы и пилотируемый полет к Марсу.

Скорее всего, Россия будет заниматься этим вместе с Китаем, Индией и, возможно, Бразилией. Следует отметить: Россия и так собиралась завершить работу в проекте, а западные санкции просто ускорили этот процесс.

Несмотря на столь грандиозные планы, все может остаться на бумаге, если не будет разработан более эффективный и дешевый способ доставки грузов за пределы земной атмосферы. На постройку все той же МКС было затрачено в общей сложности свыше 100 миллиардов долларов! Сколько «зеленых» потребуется для создания станции на Луне, даже страшно представить.

Космический лифт мог бы стать идеальным решением проблемы. Когда лифт заработает, стоимость доставки может упасть до двух долларов за килограмм. Но прежде придется основательно поломать голову над тем, как его построить.

Запас прочности

В 1959 году ленинградский инженер Юрий Николаевич Арцутанов разработал первый рабочий вариант космического лифта. Поскольку строить лифт снизу вверх невозможно из-за гравитации нашей планеты, он предложил сделать наоборот - строить сверху вниз. Для этого следовало запустить специальный спутник на геостационарную орбиту (около 36 000 километров), где он должен был занять позицию над определенной точкой на экваторе Земли. Затем начать на спутнике сборку тросов и постепенно опускать их по направлению к поверхности планеты. Сам спутник также играл роль противовеса, постоянно поддерживая тросы в натянутом состоянии.

Широкая общественность смогла подробно познакомиться с этой идеей, когда в 1960 году «Комсомольская правда» опубликовала интервью с Арцутановым. Интервью опубликовали и западные СМИ, после чего уже весь мир подвергся «лифтовой лихорадке». Особенно усердствовали писатели-фантасты, рисовавшие радужные картины будущего, непременным атрибутом которых являлся космический лифт.

Все специалисты, изучающие возможность создания лифта, сходятся во мнении, что главным препятствием к реализации этого замысла является отсутствие достаточно прочного материала для тросов. По расчетам, этот гипотетический материал должен выдерживать напряжение 120 гигапаскалей, т.е. свыше 100 000 килограммов на квадратный метр!

Прочность стали - приблизительно 2 гигапаскаля, у особо прочных вариантов - максимум 5 гигапаскалей, у кварцевого волокна - немногим выше 20. Этого просто чудовищно мало. Встает извечный вопрос: что делать? Развивать нанотехнологии. Самым перспективным кандидатом на роль троса для лифта могут стать углеродные нанотрубки. Согласно расчетам, их прочность должна быть гораздо выше минимальных 120 гигапаскалей.

На данный момент наиболее прочный образец смог выдержать напряжение в 52 гигапаскаля, но в большинстве других случаев они разрывались в диапазоне от 30 до 50 гигапаскалей. В ходе продолжительных исследований и экспериментов специалистам из Университета Южной Калифорнии удалось добиться неслыханного результата: их трубка сумела выдержать напряжение в 98,9 гигапаскаля!

К сожалению, это был единичный успех, к тому же с углеродными нано-трубками есть еще одна существенная проблема. Николас Пуньо, ученый из Туринского политехнического университета, пришел к неутешительному выводу. Оказывается, даже из-за смещения одного атома в структуре углеродных трубок прочность определенного участка может резко снизиться на 30%. И это все при том, что самый длинный полученный образец нанотрубки пока составляет всего два сантиметра. А если принять во внимание тот факт, что длина троса должна составлять почти 40 ООО километров, задача кажется просто невыполнимой.

Мусор и бури

Другая весьма серьезная проблема связана с космическим мусором. Когда человечество обосновалось на околоземной орбите, оно принялось за одно из своих самых любимых занятий - засорение окружающего пространства продуктами своей жизнедеятельности. В самом начале мы как-то не особо беспокоились по этому поводу. «Ведь космос бесконечен! - рассуждали мы. - Выбросишь бумажку, а она отправится дальше, бороздить просторы Вселенной!»

Тут-то мы и дали маху. Весь мусор и остатки летательных аппаратов обречены навечно наматывать круги вокруг Земли, захваченные ее мощным гравитационным полем. Не нужно быть инженером, чтобы догадаться, что произойдет, если один из таких мусорных «кусочков» столкнется с тросом. Поэтому тысячи исследователей со всего мира ломают свои умные головы над вопросом ликвидации околоземной свалки.

Также не совсем ясна ситуация с основанием лифта на поверхности планеты. Вначале предполагалось создать стационарное основание на экваторе для обеспечения синхронности с геостационарным спутником. Однако тогда не избежать пагубного воздействия на лифт ураганных ветров и прочих природных катаклизмов.

Потом появилась идея закрепить основание на плавучей платформе, которая могла бы совершать маневры и «обходить» бури стороной. Но в таком случае операторы на орбите и платформе будут вынуждены выполнять все передвижения с хирургической точностью и абсолютной синхронностью, иначе вся конструкции полетит в тартарары.

Не вешать нос!

Несмотря на все трудности и препятствия, лежащие на нашем тернистом пути к звездам, мы не должны вешать нос и забрасывать этот, вне всяких сомнений, уникальный проект в долгий ящик. Космический лифт - это не роскошь, а жизненно необходимая вещь.

Без него колонизация ближнего космоса станет занятием в высшей степени трудоемким, дорогостоящим и может растянуться на долгие годы. Есть, конечно, предложения разрабатывать антигравитационные технологии, но это уж слишком далекая перспектива, а лифт нужен в ближайшие 20-30 лет.

Лифт необходим не только для поднятия и спуска грузов, но и в качестве «мега-пращи». С его помощью можно запускать космические корабли в межпланетное пространство без затрат огромных объемов столь драгоценного топлива, которое в противном случае может быть пущено на разгон судна. Особый интерес вызывает идея использования лифта для очистки Земли от опасных отходов.

Сегодня для того, чтобы выйти в космическое пространство, необходимо проделать опасное путешествие на ракете. Чтобы вас взяли в космос, нужно хорошее здоровье, крепкие нервы и много денег.

Исследователи из NASA и компания LiftPort Inc. предлагают упростить вывод крупных объектов на орбиту, используя систему, названную ими «Космическим лифтом».

Что это вообще такое

Вот как объясняет концепцию космического лифта доктор Брэдли Эдвардс в отчете NIAC:

«Космический лифт – это лента, один конец которой присоединен к поверхности Земли, а другой находится на геосинхронизированной орбите в космосе (на высоте 100 000 км). Гравитационное притяжение нижнего конца ленты компенсируется силой, вызванной центростремительным ускорением верхнего конца. Таким образом лента постоянно находится в натянутом состоянии. Изменяя длину ленты, можно достигать разных орбит. Космическая капсула, содержащая полезный груз, будет передвигаться вдоль ленты. Для начального старта капсулы потребуется усилие, но, как только она будет приближаться к концевой станции, ее скорость будет увеличиваться из-за центростремительного ускорения всей системы. На конечной станции, если это необходимо, капсула отсоединяется от лифта и выходит в открытый космос. Скорость капсулы при этом будет составлять 11 км/с. Этой скорости будет достаточно для того, чтобы начать путешествие к Марсу и другим планетам. Таким образом, затраты на пуск капсулы будут только в начале ее пути на орбиту. Спуск будет производиться в обратном порядке – в конце спуска капсулу будет ускорять гравитационное поле Земли. Можно использовать космический лифт в качестве "пусковой платформы» для космических кораблей, запускаемых к другим планетам, спутникам и астероидам (Марсу, Венере, Луне). Это поможет сократить расходы, связанные с традиционным запуском химических ракет. Также можно построить лифт грузоподъемностью до 100 тонн, что позволит строить на орбите большие колонии и орбитальные станции".

Рис. 1. Космический лифт от компании LiftPort Inc.

Естественно, что после ознакомления с этим проектом возникает ряд сомнительных вопросов. Компания LiftPort Inc. приводит список наиболее распространенных вопросов и своих ответов на них.

Как вы собираетесь сохранять угловой момент постоянным?

Большей частью мы полагаемся на то, что это сделает Земля. Но мы предусмотрели тяжелые «якоря» на обоих концах лифта для того, чтобы увеличить инерцию системы и, таким образом, держать ее в равновесии.

Что случится, если порвется лента?

Начнем с того, что спроектированная лента будет вдвое жестче, чем это необходимо. Погодные условия в месте, выбранном для расположения космического лифта, будут исключать возможность ураганов и молний. Скорее всего, станция лифта будет расположена в океане. Но все же, что произойдет, если лента порвется? Большая часть ленты улетит в космическое пространство, причем некоторая ее часть сгорит от высокой скорости полета в атмосфере. Нижняя часть ленты упадет в океан. Не загрязнит ли лента и ее не сгоревшие в атмосфере остатки океан? Вряд ли, так как вес километра ленты – 7,5 кг. При падении с высоты лента не разовьет большей скорости, чем раскрытая падающая газета. Посторонний наблюдатель увидит, скорее всего, только яркую полоску через все небо (от сгоревшей ленты) и все. Конечно, куски ленты будут долго находиться во взвешенном состоянии в воздухе. Наибольшую опасность представляют собой транспортируемые грузы, потерявшие связь с лифтом. Грузы, достигшие орбит, останутся на орбитах. Те грузы, которые только начали движение упадут вниз. Некоторые из грузов, достигшие скорости 11 км/с вылетят в открытый космос.

Будут ли влиять на лифт неблагоприятные погодные условия?

Будет ли ветер на больших высотах проблемой? Математическое моделирование показало, что предложенная в конструкции лифта лента разорвется при скорости 72 м/с, т.е. при 5-бальном ветре, или урагане. Предложенное расположение лифта (на платформе в океане) не будет находиться в зоне сильных ветров и ураганов.


Рис. 2. Вид базовых станций (наземной и космической)

Будет ли лента производить электрический ток из-за разности потенциалов? Будет ли лента длиной 100000 км представляет собой электрическую угрозу?

В этой проблеме есть несколько аспектов. Электрический ток по ленте космического лифта может течь только благодаря: 1) электрическим свойствам земной атмосферы; 2) перекачивании через лифт космической плазмы; 3) постоянном пересечении лифтом магнитных полей Земли.

1) Атмосфера Земли содержит регионы разного заряда, которые все время находятся в движении. Они могут дать разность потенциалов, но только на малых дистанциях. Когда идет гроза и перемещение зарядов затрагивает большие дистанции, есть возможность того, что молния повредит ленту лифта, но как было сказано выше, конструкторы постараются так выбрать место расположения базовой станции, чтобы исключить возможность грозы. Базовая станция будет расположена на корабле, поэтому лифт будет обладать «мобильностью» и сможет, при необходимости, передвинуться, избегая шторма.

2) Заряды, связанные с космической плазмой, могут собираться на верхней станции лифта. Но ток, провоцируемый ими, настолько мал, что не сравним с током, полученным от присоединения к противоположным концам ленты обычной батарейки. Малое количество зарядов позволяет не учитывать эту опасность.

3) При пересечении магнитных полей проводником в нем производится электрический ток. В нашем случае лента неподвижна по отношению к магнитному полю Земли, и электрический ток, производимый в ленте, будет очень мал, поэтому этой опасностью тоже можно пренебречь. В современных телевышках электрический ток, производимый магнитными полями земли, практически отсутствует.

Будут ли различные объекты задевать ленту?

Будет ли космический мусор и спутники проблемой? Космические объекты, находящиеся на низкой орбите Земли (Low Earth Orbit – LEO), будут составлять серьезную проблему. Для того, чтобы лифт не сталкивался с различными объектами, будет предусмотрена система активного избегания препятствий. В среднем необходимо будет избегать различных объектов один раз в 14 часов. Для построения системы отклонения необходимо разработать систему трассирования объектов, работающую с точностью до 1 сантиметра. Разработка такой системы входит в план исследований компании LiftPort.

Существует несколько концепций построения космического лифта. В некоторых предлагается свободный конец ленты присоединять к астероиду. Этим решается проблема противовеса и добыча с астероида полезных ископаемых. Некоторые проекты предлагают протянуть кабель толщиной от 10 до 30 метров в диаметре. Как говорят специалисты из LiftPort, это просто невозможно реализовать.

Рис. 3. Один из проектов космического лифта

Причем тут нанотехнологии

Правда, если бы не быстрое развитие нанотехнологий и открытие нанотрубок, концепция космического лифта не продвинулась бы дальше научной фантастики. Надо сказать, что идее космического лифта уже больше ста лет. Впервые о подъемнике такого рода заговорил в 1895 году Константин Циолковский. Основоположник современной космонавтики предложил построить башню высотой в тысячи километров, которая должна была быть укреплена на какой-либо тверди на околоземной орбите. Самым прочным материалом в то время была сталь, но для строительства «башни» она была слишком тяжела.

Однослойные углеродные нанотрубки, изобретенные в 1991 году, достаточно прочны для того, чтобы служить основой ленты лифта. Они прочнее стали в 100 раз. Теоретически, они в 3–5 раз прочнее, чем надо для постройки лифта.

Рис. 4. Диаграмма прочности нанотрубок по сравнению с высокопрочной сталью

Правда, самые длинные нанотрубки, которые удалось изготовить, длиной всего несколько сантиметров. А это даже не километр, не говоря о 100 000 километрах.

Но совсем нет необходимости делать всю ленту длиной 100 000 км из цельных нанотрубок. Отдельные фракции, состоящие из нанотрубок длиной до 2 сантиметров, будут иметь такую же прочность разрыва, как и длинные. Правда, исследователи из LiftPort пытаются найти методы соединения фракций в более длинные полосы без потери прочности. Как они утверждают, лента будет представлять собой полимерную структуру с включениями нанотрубок. Для ленты космического лифта алмазоид был бы универсальным материалом. Он будет характеризоваться большей прочностью, но, опять-таки, пока нет эффективных способов получения и массового производства алмазоидных материалов.

Компания настроена вполне оптимистично, так как недавно стало известно о новых технологиях в производстве нанотрубок. Так, ученые из Кембриджского университета разработали способ формирования пряжи из длинных волокон, которые состоят из нанотрубок. Алан Уиндл (Alan Windle) и его коллеги из Кембриджа для изготовления пряжи использовали свежеприготовленные нанотрубки.

Исходный материал – нанотрубки – обрабатывают этанолом, который в дальнейшем служит источником углерода, затем добавляют катализатор (ферроцен) и еще один реагент – тиофен. Смесь загружают в горячую печь, куда постоянно подают водород. Продукт получают в форме спутанных волокон, по виду похожих на сахарную вату. Затем эти волокна наматывают на вращающиеся стержни, в итоге получались скрученные волокна.

Ученые признают, что создан лишь прототип новой технологии. Да и прочность полученного волокна пока не впечатляет – она не сильно отличается от прочности традиционных волокон. Однако уже видны различные пути увеличения прочности, например, за счет ориентирования углеродных трубок в одном направлении. Если прочность удастся повысить в 10 раз, то это значение приблизится к прочности углеродных волокон, а само производство волокна при этом может оказаться более дешевым за счет использования более дешевых компонентов. Пока не ясно, можно ли этим способом создать такой канат, который по прочности на разрыв будет сопоставим с прочностью самих нанотрубок. Но если это удастся сделать, то компания LiftPort получит шанс на сокращение срока постройки лифта.

Рис. 5. Модельный прототип капсулы лифта

В 2000 году доктор Брэд Эдвардс выпустил отчет, в котором говорилось что предварительные исследования по построению космического лифта проделаны. Далее Мишелем Лэйном в Сиэтле была основана компания HighLift Systems, которой NASA выделила финансирование для разработки и постройки космического лифта. Как планирует компания LiftPort Inc., космический лифт будет построен, опробован и запущен в работу через 15 лет. В первые шесть лет компания будет привлекать инвестиции, с шестого года по десятый разрабатывать конструкцию лифта, и, наконец, в оставшиеся годы будет проходить непосредственно постройка.

Здесь можно найти видеоролик в формате Real Player, презентующий одну из концепций космического лифта (5 Мб): http://wid.ap.org/…/elevator.rm

потому-что те люди, которые писали про этот лифт (я имею ввиду LiftPort Inc., авторов оригинальной публикации, перевода или компиляции – уж не знаю, чей «вклад» тут больше) не пробовали прикинуть на бумаге эффективность этого лифта, попробовать применить известные формулы, взять парочку несложных интегралов (или построить графиков). В общем хотя бы для себя (не наночайников) перевести текст в цифры, Ведь в заявлениях ошибиться проще, чем в расчетах… Я предполагаю, что где-то может быть нормальная модель лифта, но уж точно не то, что предложно в этой статье. Некоторые заявления в этой заметке просто не проходили элементарную проверку. Будет время, могу написать сомнительные моменты статьи в формулах и графиках. Просто сейчас в комадировке, без русской клавиатуры текст набирать сложно (уже половина есть). А текста будет достаточно, т.к. формат для «чайников» останется, но текст полный, для возможности проверки, возможно я ошибаюсь где-то. Написаный текст с анализом «лифта» из этой заметки выложу где-нибудь в виде файла Word.

Построят, вот только когда?.. доживем до этого события? И кста, модель лифта из одной трубы с противовесом мне не внушает доверия. Боюсь даже представить что произойдет когда верхняя часть трубки столкнется с другим обьектом(астероид). Нужны дополнительные крепления, по типу креплений высоких башень или вышек(3–4 штуки).

Для начального старта капсулы потребуется усилие, но, как только она будет приближаться к концевой станции, ее скорость будет увеличиваться из-за центростремительного ускорения всей системы.
Какая-то популистская фраза. В принципе верна, но центробежная сила превышает силу тяжести только выше геостационарной орбиты. А вывод на эту высоту потребует более 80% от энергии, требуемой для вывода в бесконечно удаленную точку. И еще у авторов не указано куда они девают силу Кориолиса. Зато уже понятно что будут добывать ископаемые с астероидов, очень «веский» факт за лифт.

Несмотря на кризис и войну санкций в цивилизованных экономически развитых странах наблюдается большой интерес к космонавтике. Этому способствуют успехи в развитие ракетостроение и в изучении с помощью космических аппаратов околоземного пространства, планет Солнечной системы и ее периферии. Все новые и новые государства включаются в космическую гонку. Китай и Индия громко заявляют о своих амбициях в деле освоения Вселенной. Уходит в прошлое монополия государственных структур России, США и Европы на полеты за пределы земной атмосферы. Все больший интерес к транспортировке на космическую орбиту людей и грузов проявляет бизнес. Появились фирмы, которые возглавляют энтузиасты, влюбленные в космос. Они занимаются разработкой, как новых ракетоносителей, так и новых технологий, которые позволят сделать скачок в освоении Вселенной. Всерьез рассматриваются идеи, которые еще вчера считались неосуществимыми. И то, что считалось плодом, воспаленного воображения писателей-фантастов, теперь является одним из возможных проектов, подлежащих реализации в ближайшем будущем.

Одним из таких проектов может стать космический лифт.

Насколько это реально? На этот вопрос попытался ответить журналист ВВС Ник Флеминг в своей статье «Лифт на орбите: научная фантастика или вопрос времени?», которая выносится на внимание интересующихся космосом.


Лифт на орбиту: научная фантастика или вопрос времени?

Благодаря космическим лифтам, способным доставлять людей и грузы с поверхности Земли на орбиту, человечество смогло бы отказаться от использования экологически вредных ракет. Но создать подобное устройство непросто, как выяснил корреспондент BBC Future .

Когда речь заходит о прогнозах по поводу развития новых технологий, многие считают авторитетом миллионера Элона Маска - одного из лидеров сектора негосударственных научно-исследовательских работ, которому пришла в голову идея "Гиперпетли" - проекта высокоскоростного трубопроводного пассажирского сообщения между Лос-Анджелесом и Сан-Франциско (время в пути займет всего 35 минут). Но есть проекты, которые даже Маск считает практически не осуществимыми. Например, проект космического лифта.

"Это слишком технически сложная задача. Вряд ли космический лифт можно создать в реальности", - заявил Маск на конференции в Массачусетском технологическом институте прошлой осенью. По его мнению, проще соорудить мост между Лос-Анджелесом и Токио, чем построить лифт на орбиту.

Идея отправлять людей и грузы в космос внутри капсул, скользящих вверх вдоль гигантского троса, который удерживается на месте благодаря вращению Земли, не нова. Подобные описания можно встретить в работах таких писателей-фантастов, как Артур Кларк. Однако осуществимой на практике эту концепцию до сих пор не считали. Может быть, уверенность в том, что нам по силам решить эту чрезвычайно сложную техническую задачу, - на самом деле лишь самообман?

Энтузиасты космического лифта считают, что построить его вполне возможно. По их мнению, ракеты, работающие на токсичном топливе, представляют собой устаревший, опасный для человека и природы и чрезмерно дорогостоящий вид космического транспорта. Предлагаемая альтернатива по сути является железнодорожной веткой, проложенной на орбиту - суперпрочный трос, один конец которого закреплен на поверхности Земли, а другой - к противовесу, находящемуся на геосинхронной орбите и потому постоянно висящему над одной точкой земной поверхности. В качестве лифтовых кабинок использовались бы электрические аппараты, движущиеся вверх и вниз вдоль троса. Благодаря космическим лифтам стоимость отправки грузов в космос удалось бы снизить до 500 долларов за килограмм - согласно недавнему отчету Международной академии астронавтики (IAA), сейчас эта цифра составляет приблизительно 20000 долларов за килограмм.

Энтузиасты космических лифтов указывают на вредность технологий запуска ракет на орбиту

"Данная технология открывает феноменальные возможности, она обеспечит человечеству доступ к Солнечной системе, - говорит Питер Суон, президент Международного консорциума по созданию космического лифта ISEC и соавтор отчета IAA. - Я думаю, что первые лифты будут работать в автоматическом режиме, а спустя 10-15 лет в нашем распоряжении уже будет от шести до восьми таких устройств, достаточно безопасных, чтобы транспортировать людей".

Истоки идеи

Сложность в том, что высота подобного сооружения должна составлять до 100 000 км - это больше, чем два земных экватора. Соответственно, конструкция должна быть достаточно прочной, чтобы выдержать собственный вес. На Земле просто нет материала с необходимыми прочностными характеристиками.

Но некоторые ученые думают, что эту проблему можно будет решить уже в текущем столетии. Крупная японская строительная компания объявила о том, что собирается соорудить космический лифт к 2050 г. А американские исследователи недавно создали новый алмазоподобный материал на основе нанонитей из сжатого бензола, расчетная прочность которого может сделать космический лифт реальностью еще при жизни многих из нас.

Впервые концепция космического лифта была рассмотрена в 1895 г. Константином Циолковским. Российский ученый, вдохновленный примером недавно построенной Эйфелевой башни в Париже, занялся исследованием физических аспектов строительства гигантской башни, при помощи которой можно было бы доставлять космические корабли на орбиту без использования ракет. Позднее, в 1979 г., эту тему упомянул писатель-фантаст Артур Кларк в романе "Фонтаны рая" - его главный герой строит космический лифт, схожий по конструкции с обсуждаемыми сейчас проектами.

Вопрос в том, как воплотить идею в жизнь. “Мне нравится дерзость концепции космического лифта, - говорит Кевин Фонг, основатель Центра высотной, космической и экстремальной медицины при Университетском колледже Лондона. - Я могу понять, почему она кажется людям такой привлекательной: возможность добираться до низких орбит Земли недорого и безопасно открывает для нас всю внутреннюю область Солнечной системы".

Проблемы безопасности

Однако построить космический лифт будет непросто. "Начать с того, что трос необходимо изготовить из суперпрочного, но гибкого материала, обладающего необходимыми весовыми и плотностными характеристиками, чтобы поддерживать вес движущихся по нему аппаратов, и одновременно способного выдерживать постоянные поперечные воздействия. Сейчас такого материала просто не существует, - говорит Фонг. - Кроме того, строительство такого лифта потребует самого интенсивного использования космических кораблей и самого большого количества выходов в открытый космос за всю историю человечества".

По его словам, нельзя сбрасывать со счетов и проблемы безопасности: "Даже если нам удастся преодолеть огромные технические сложности, связанные с постройкой лифта, получившаяся конструкция будет представлять собой гигантскую натянутую струну, сводящую космические аппараты с орбит и постоянно подвергающуюся бомбардировке космическим мусором".

Смогут ли когда-нибудь туристы воспользоваться лифтом, чтобы отправиться в космос?

За последние 12 лет в мире опубликованы три подробных проекта космического лифта. Первый описан Брэдом Эдвардсом и Эриком Уэстлингом в книге "Космические лифты", вышедшей в 2003 г. Этот лифт предназначен для транспортировки 20-тонных грузов за счет энергии расположенных на Земле лазерных установок. Расчетная себестоимость перевозки - 150 долларов за килограмм, а стоимость проекта оценивается в 6 млрд долларов.

В 2013 г. академия IAA развила эту концепцию в собственном проекте, обеспечивающем повышенную защиту лифтовых кабинок от атмосферных явлений до высоты в 40 км., при достижении которой движение кабинок на орбиту должно происходить уже за счет солнечной энергии. Себестоимость транспортировки - 500 долларов за килограмм, а стоимость постройки первых двух таких лифтов - 13 млрд долларов.

В ранних концепциях космического лифта приводились разнообразные возможные решения проблемы космического противовеса, призванного удерживать трос в натянутом положении - в том числе предлагалось использовать в этих целях захваченный и доставленный на нужную орбиту астероид. В отчете IAA отмечается, что когда-нибудь такое решение, может быть, и удастся реализовать, но в ближайшем будущем это невозможно.

Плавучий "якорь"

Чтобы удерживать трос массой в 6300 тонн, противовес должен весить 1900 тонн. Частично его можно сформировать из космических кораблей и других вспомогательных аппаратов, которые будут использоваться для постройки лифта. Возможно также использование находящихся неподалеку отработавших спутников, отбуксировав их на новую орбиту.

Они также предлагают выполнить "якорь", крепящий трос к Земле, в виде плавучей платформы размером с крупный нефтеналивной танкер или авианосец, и разместить его неподалеку от экватора, с целью увеличения его несущей способности. В качестве оптимальной точки размещения "якоря" предлагается район в 1000 км на запад от Галапагосских островов, редко подверженный ураганам, торнадо и тайфунам.

Космический мусор можно было бы использовать в противовесе на верхнем конце троса космического лифта

Корпорация Obayashi - одна из пяти крупнейших строительных фирм Японии - в прошлом году объявила о планах по созданию космического лифта более прочной конструкции, по которому перемещались бы автоматические кабинки на магнитной подвеске. Подобная технология применяется на высокоскоростных железных дорогах. Более прочный трос необходим потому, что японский лифт предполагается использовать и для транспортировки людей. Стоимость проекта оценивается в 100 млрд долларов, при этом себестоимость транспортировки грузов на орбиту может составить 50-100 долларов за килограмм.

Хотя технических трудностей при строительстве подобного лифта, несомненно, будет предостаточно, на самом деле единственный элемент конструкции, который пока невозможно создать, - это сам трос, говорит Суон: "Единственная технологическая проблема, которую предстоит решить - подбор подходящего материала для изготовления троса. Все остальное мы можем построить уже сейчас".

Алмазные нити

На данный момент самым подходящим материалом для троса можно считать углеродные нанотрубки, созданные в лабораторных условиях в 1991 г. Эти цилиндрические структуры имеют предел прочности на разрыв в 63 гигапаскаля, то есть они примерно в 13 раз прочнее самой прочной стали.


Максимально достижимая длина таких нанотрубок постоянно увеличивается - в 2013 г. китайским ученым удалось довести ее до полуметра. Авторы доклада IAA прогнозируют, что к 2022 г. будет достигнута длина в километр, а к 2030 гг. можно будет создавать нанотрубки подходящей длины для использования в космическом лифте.

Тем временем в сентябре прошлого года появился новый сверхпрочный материал: в статье, опубликованной в научном журнале по материаловедению Nature Materials, группа ученых под руководством профессора химии Джона Бэддинга из Университета штата Пенсильвания сообщила о получении в лаборатории супертонких "алмазных нанонитей", которые могут оказаться даже прочнее, чем углеродные нанотрубки.

Ученые сжали жидкий бензол под давлением, превышающим атмосферное в 200 000 раз. Затем давление медленно понизили, и оказалось, что атомы бензола перегруппировались, создав высокоупорядоченную структуру из пирамидальных тетраэдров.

В результате образовались супертонкие нити, очень напоминающие по структуре алмаз. Хотя напрямую измерить их прочность невозможно из-за сверхмалых размеров, теоретические расчеты указывают на то, что эти нити могут оказаться более прочными, чем самые прочные из существующих синтетических материалов.

Снижение рисков

"Если мы научимся создавать алмазные нанонити или углеродные нанотрубки необходимой длины и с необходимыми качествами, можно быть практически уверенным в том, что они окажутся достаточно прочными для использования в космическом лифте", - говорит Бэддинг.


Впрочем, даже если удастся найти подходящий материал для троса, собрать конструкцию будет весьма непросто. Вероятнее всего, возникнут и трудности, связанные с обеспечением безопасности проекта, необходимого финансирования и грамотного разведения конкурирующих интересов. Однако Суона это не останавливает.

Так или иначе, человечество стремится в космос и готово тратить на это большие деньги

"Разумеется, мы столкнемся с большими сложностями, но проблемы приходилось решать и при строительстве первой трансконтинентальной железной дороги [в США], и при прокладке Панамского и Суэцкого каналов, - говорит он. - Потребуется много времени и денег, но, как и в случае с любым крупным проектом, просто нужно решать проблемы по мере их возникновения, одновременно с этим постепенно снижая возможные риски".

Даже Элон Маск не готов категорически отмести возможность создания космического лифта. "Не думаю, что на сегодня эта идея реализуема, но если кто-то сможет доказать обратное, будет здорово", - сказал он на прошлогодней конференции в Массачусеттском технологическом институте.


Похожие статьи

  • Варианты отопления частного дома своими руками Варианты отопления частного дома

    В таких системах тепло переносит нагретая вода . Она подогревается в котельной, в печи или котле. Отсюда поступает в трубы и радиаторы, которые нагреваются и излучают тепло внутрь комнат. Возможен вариант обогрева дома без радиаторов....

  • Как сделать регулятор частоты оборотов болгарки своими руками Зачем болгарке регулировка оборотов

    Регулятор оборотов для болгарки своими руками. У вас есть болгарка, но нет регулятора оборотов? Вы можете изготовить его своими руками. 1 Регулятор оборотов и плавный пуск для болгарки 2 Зачем нужен плавный пуск 3 Электронный блок в УШМ 4...

  • Как избавиться от травы на огороде раз и навсегда

    Ухоженный газон является гордостью хозяев частного дома. Чтобы поддерживать его в идеальном состоянии, потребуется приобрести специальную технику. Существует множество моделей подобного оборудования. Выбор зависит от особенностей...

  • Какие материалы использовать?

    Трубка из нержавейки для самогонного аппарата используется как для создания эффективного в работе и долговечного змеевика, так и для установки дополнительных соединений с сухопарником, подачи воды и т. п. Преимущество нержавейки перед...

  • Интересно о том, почему гниют листья у орхидеи: что делать?

    Множество проблем могут возникнуть у цветоводов, решившихся на изучение, разведение и уход за этим волшебно-красивым растением. Но, когда не лучшие времена переживает заболевшая орхидея, гниет сердцевина, что делать, при этом, знает, как...

  • Посадка и выращивание лука

    Способы выращивания. Репчатый лук (репку) выращивают различными способами: в один год - посевом семян или посадкой рассады в грунт; в двулетней культуре - посадкой севка или мелких отбираемых луковиц (вегетативное размножение). Лук репку...